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Two-dimensional thermal convection of air between horizontal plates of length 
much greater than their separation distance is studied numerically by solution 
of the Boussinesq equations in finite-difference form, and experimentally by 
constraining motions to lie in a single vertical plane. Rayleigh numbers from 
lo5 to lo7 are employed. Steady rolls with wavelength twice the plate-separation 
were obtained in both cases. As the experimental two-dimensional constraint is 
relaxed, short-period turbulent fluctuations in temperature develop, the rolls or 
cells become only quasi-steady, and their wavelength increases. For the three- 
dimensional case, very large width-to-height ratios and averaging periods are 
found necessary before the temperature variance in time approaches the variance 
in the horizontal. 

Introduction 
It is of interest in the study of turbulence to determine the importance of 

three-dimensionality upon the occurrence and structure of the turbulence. It is 
well known that large differences could bs expected between two- and three- 
dimensional turbulence, sinoe only in two dimensions is the vorticity of fluid 
elements conserved except for molecular diffusion. Little is known, however, 
about how necessary three-dimensionality may be in order that turbulent 
motions occur. Linear stability analyses can shed no light upon the question of 
whether the unstable motions which may develop will reach steady states, 
oscillatory or vacillating states, or become irregular in space and time. Theories 
of turbulence, whether based upon a two-or a three-dimensional framework, 
assume from the outset that the motions are turbulent. Experimental studies 
are, as a matter of convenience or desire, three-dimensional, since no effort is 
usually taken to constrain the motion to two dimensions. 

Considerable information is known about two-dimensional convection between 
horizontal plates, the lower one of which is warmer than the upper. Kuo (1961) 
has shown that, for Rayleigh numbers up to seven times the critical one for the 
onset of motion, steady-state rolls or cells which are two-dimensional can exist. 
However, at  these relatively small Rayleigh numbers three-dimensional convec- 
tion is also believed to be of a steady-state character (Thomas & Townsend 
1957). 

In  a numerical study of two-dimensional convection at  a Rayleigh number 
observed to produce strongly turbulent motions experimentally, it was shown 
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by Deardorff (1964) that the convective motions are essentially steady and non- 
turbulent. However, it  was not known if the absence of turbulent motions was 
associated with the two-dimensional assumption or with the limited width 
employed (only twice the height). 

The present study was motivated in particular by the desire to determine 
which of these two factors caused the motions to be non-turbulent. The previous 
study is here extended to a region of length eight times the plate separation, and 
an experimental study is also conducted in which motions are constrained to lie 
in a vertical plane. 

In  $ 1  a direct numerical method is used, rather than a more theoretical 
analytic method, in order to avoid assumptions about the non-linear terms of the 
equations, and in order to be able to treat the equivalent of a large number of 
Fourier components of the motion in both the horizontal and the vertical 
directions. 

1. Numerical study 
1 . 1 .  Two-dimensional theory 

The Boussinesq approximation of constant density, except in the buoyancy 
term of the vertical equation of motion, is employed, as well as the two- 
dimensional assumption. The vorticity and thermal diffusion equations are made 
non-dimensional by division of all lengths by h, the plate separation; all velocities 
by v/h, where v is the kinematic viscosity; time by h2/v; and temperature by AT,  
the positive temperature difference between horizontal plates. The equations 
then become, respectively, 

and 

In these non-dimensional equations the vorticity is given by 7 = awlax - aulaz; 
u and w are the respective non-dimensional velocity components in the horizontal 
x- and vertical z-directions; Ra is the Rayleigh number gATh3/Fvk, where g is 
the gravitational acceleration, is the mean temperature of the gas, and k is the 
thermal diffusivity; T is the non-dimensional temperature; and Pr is the Prandtl 
number vlk. The use of non-dimensional quantities will be retained throughout 
the paper. 

A stream function $ may be defined by 

u = - a $ p z ,  w = a$laX, (3) 

so that the simplified continuity equation 

+ awpz = o (4) 

is satisfied. The vorticity then becomes 

7 = az+/ax= + az$/az2. ( 5 )  
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Equations (l), (2), (3) and (5) were expressed in finite-difference form, and 
applied at 80 points horizontally and 40 points vertically into which the region 
between plates was subdivided. A length of eight times the height was obtained 
by allowing the horizontal grid increment Ax, to be four times larger than the 
vertical grid increment Az. A Rayleigh number of 6.75 x lo6 and Prandtl number 
of 0.71 (appropriate to air) were specified, with boundary conditions of constant 
temperatures and no fluid motion at the horizontal plates. The vorticity at the 
horizontal boundary, qo, was related to the stream function at a point Az interior 
to the boundary through a truncated Taylor expansion as follows: 

$(O +Az) = @ ( O )  + (a$/az),Az + &(a'$/az2)o (LIZ)'. (6) 

FIG- 1. Streamlines (upper half) and isotherms (lower) at t = 0.22. Streamlines &re 
at intervals of 20, with the zero value intersecting boundaries. Isotherms are at intervals 
of 0.1. Warm and cool plumes are labelled w and c respectively. 

Then qo = (a2$/8z2), is found to be 

To = 2$(0 + A z ) / ( W ,  (7) 

since + ( O )  = 0 = (a$/&), because of the conditions uo = wo = 0. Cyclic condi- 
tions were used at the end walls. Initial conditions were zero motion and a sinu- 
soidal temperature perturbation superimposed upon a linear decrease of 
temperature from the lower plate to the upper plate. Calculations were made on 
a CDC 3600 digital computer. Other details of the calculation are the same as 
for case (c)  of Deardoe (1964). 

1.2. Numerical results 
After a non-dimensional time of 0.04 had elapsed i t  was evident that the motions 
were approaching a steady state, except for an oscillation which became estab- 
lished at t = 0-10 and persisted until calculations were terminated at t = 0.22. 
The streamlines and isotherms at this later time are shown in figure 1. There are 
eight vortices present, so that the preferred non-dimensional wavelength in the 
horizontal direction is 2( 1 & 4). The uncertainty of 12.5 % reflects the fact that 
an even number of vortices was forced by the cyclic end conditions. It is inter- 
esting to note that stability studies for the much smaller, critical Rayleigh 
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number of 1708 yield a two-dimensional wavelength of 2-02 (Chandrasekhar 
1961). 

The non-dimensional boundary heat flux, or Nusselt number, is shown as 
a function of time in figure 2. It starts out with the molecular value of unity and 
soon overshoots the equilibrium value which is seen to be about 7.8 for small 
oscillations, and 7.2 for larger oscillations. The upper dashed line is the empirical 
value obtained from experiments of Silveston (1958), and the lower one that of 
Globe & Dropkin (1958) for the same Rayleigh and PrandtI numbers. 
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FIGURE 2. Nusselt number as a function of time. 

The oscillation is associated with unequal intensities of adjacent vortices and 
with organized inclination or swaying of the thermal plumes (figure 1). It is 
quite evident that the organized inclination of the plumes and cell-boundaries 
could not occur if solid rather than cyclic end boundaries were employed. The 
oscillation definitely appears to be real and not caused by any numerical 
instability, because nearly 400 time steps were required for each cycle of the 
oscillation. It is not clear, however, if this kind of oscillation would always occur 
independent of the choice of initial conditions, or whether its occurrence requires 
the proper kind of perturbation to persist after the steady-state configuration 
has been approached. Once established, however, the oscillation appears to 
maintain itself in the following manner. The alternating vortices which are more 
intense and wider than their neighbours gradually cause, by advection, the warm 
and cool plumes at their peripheries to become farther apart. (At the same time, 
the plumes become tilted in the direction of circulation of the more intense 
vortices.) The less intense vortices then find the horizontal temperature gradient 
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across their widths to be of greater magnitude than that across the larger 
vortices. At this time the vorticity in the small vortices must begin t o  increase 
in magnitude, while that of the larger vortices must decrease in magnitude, 
because of the buoyancy term in equation (1). At a later time when all vortices 
are of equal intensity, the thermal plumes have not yet become evenly spaced 
but continue t o  cause the growing vortices to become more intense. The cycle 
starts to reverse at the moment when the warm and cool plumes become evenly 
spaced. At time t = 0.22, for which figure 1 applies, the plumes are in the stage 
of increasing their tilt, and the more intense negative vortices are still amplifying. 
The oscillations gradually increase in amplitude as the motions in alternate 
vortices become more exactly in phase. 

At a non-dimensional time of 0.09 before the well-organized oscillations had 
become initiated, the Nusselt number reached a maximum value of 7.8 in con- 
junction with the fact that the plumes were then directed vertically and thermal 
boundary layers were most compressed. The later decrease of the average 
Nusselt number as the oscillation slowly increased reflects the fact that the 
plumes were then usually inclined. These results suggest how turbulence in three- 
dimensional convection causes the Nusselt number to be somewhat smaller than 
the two-dimensional value through the disruptive effect upon the major thermal 
plumes. 

The main conclusions to be drawn from these two-dimensional calculations are 
that two-dimensionality prevents the occurrence of irregular, turbulent convec- 
tion, a t  least for Rayleigh numbers up to 6.75 x lo5, and that the preferred wave- 
length of two-dimensional cells at this Rayleigh number is still about the same 
as at the critical Rayleigh number. Both conclusions strengthen the previous 
findings of Deardorff (1964). However, the latter conclusion does not agree well 
with results of a quasi-linear study by Herring (1964) in which a non-dimensional 
wavelength of about 0.5 yielded maximum heat flux at this Rayleigh number, 
though at a very large Prandtl number. 

In  the next section, experimental results will be given of the absence of turbu- 
lent motions for convection constrained to be two-dimensional, for three different 
Rayleigh numbers spanning that of the numerical study. In  addition, the manner 
in which wavelengths and intensities of temperature variations change as the 
experimental two-dimensional constraint is relaxed will be examined. 

2. Experimental study 
2.1. Busic equipment 

3 schematic drawing of the convection chamber is shown in figure 3. The height 
h is adjustable between 5 and 20cm, and the temperature difference AT' is 
typically between 15 and 30°C. Rather large values of AT are desirable for 
accuracy of temperature measurements, but values larger than about 30 "C cause 
nndesirably large vertical variation of Y and k, in contrast to their assumed 
constancy in the Boussinesq approximation. The shaded barriers in the figure, 
when placed rather close together, constitute the constraint which causes motions 
between them to be parallel to the barriers. They are made of Styrofoam of 5 em 
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thickness, and extend the entire length and height of the chamber. This material 
was chosen because of its good insulation and small heat capacity. 

The horizontal plates of the chamber are aluminium of 1.3 cm thickness, and 
have smooth surfaces. They are maintained at two different temperatures by 
circulation of heated and refrigerated water through small aluminium channels 
immediately exterior to the lower and upper aluminium plates, respectively. 
The entire system is insulated with fibreglass of 5 cm thickness, except for the 
outer lateral walls of the chamber which consist of Plexiglass of 1.3 cm thickness. 
A given temperature difference AT, as measured by thermocouples within the 
circulating water, can be maintained constant within about 0.3 "C over a period 
of several days. 

1 AT 

366 cm = I U 

Convection chamber 

FIGURE 3. Schematic drawing of convection chamber as viewed from 
one side and from above. 

In  determining the Rayleigh number for these experiments the minute 
temperature drop across the aluminium plate could safely be neglected in com- 
parison with AT. The greatest uncertainty in Ra was due to uncertainty in v and 
k stemming from uncertainty of the air density. The latter quantity was com- 
puted from the perfect gas law assuming a pressure of 860 millibars. The actual 
pressure may have differed by _+ 3 % from this figure, and Ra may have been in 
error by & 6 yo. 

Measurements of air temperature between the barriers were taken by thermo- 
couples with time constants of about 0.5 sec. 

2.2. Cell wavelength 

Temperature measurements were taken midway between barriers and horizontal 
plates, both at a fixed point for a period of 1 h, and along the entire length of the 
chamber over an interval of about 2 min. From records of the latter, steady or 
quasi-steady cell-like structures were observed along the length of the chamber, 
and their number could easily be counted when the barrier separation W was 
small or comparable with h. Even at larger barrier separations, when turbulence 
was well developed, the number of predominant cycles could still be determined, 
as from figure 4, though with some subjective and sampling errors. These errors 
could not have been appreciable, however, for a horizontal spectrum of tempera- 
ture to be discussed later (figure 6) showed a very strong peak corresponding to 
the same wavelength as that obtained subjectively. The average dominant wave- 
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length was determined as the length of the chamber I ,  divided by the number of 
predominant cycles. 

For simplicity, the cyclic structures will here be called ' cells ', although their 
horizontal plan form was not directly observed. For small aspect ratios ( W / h ) ,  
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FIGURE 4. A record of temperature against longitudinal distance within 
the convection chamber. 
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FIGURE 5. Non-dimensional cell wavelength Llh against aspect ratio Wlh for three 
Rayleigh numbers. W is the width between barriers, and h is the separation between 
horizontal plates. 

however, the structures are known from temperature measurements to have the 
appearance of rolls lying in a vertical plane between barriers. At aspect ratios in 
the vicinity of 2 or 3 the structures became three-dimensional, and the term 
' cell ' is more appropriate. 
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The non-dimensional wavelength L/h is shown as a function of aspect ratio 
W/h  and of Ra in figure 5. At small values of W/h,  L/h has a value slightly less 
than 2, and agrees rather well with the numerically calculated value reported in 
Q 1.  As W / h  increases the motions become increasingly three-dimensional, and 
L/h increases. The arrow and dashed line in figure 5 refer to the two- and three- 
dimensional values, respectively, of L / h  when Ra has the critical value, (Ra),, of 
1708. At much larger Rayleigh numbers L/h  is seen to become increasingly larger 
than the critical three-dimensional value, and appears to approach asymptotic 
values for W / h  > 15. 

Ra = 1 . 6 ~  lo6 

W/h = 9 4  

c Llh 

FIGURE 6. Normalized power spectrum of temperature a t  z = 4- a t  a fixed point; 
(upper curve), and with respect to longitudinal co-ordinate (lower curve). 

The quasi-stationarity of the predominant cells at super-critical Rayleigh 
numbers, and the increase of L/h with Ra for large values of W/h,  seem to be 
consistent with satellite photographs of large-scale atmospheric cellular struc- 
tures with L/h E 30 (Krueger & Fritz 1961). However, the comparison is not 
close because of the effect of the Earth’s rotation tending to increase (Ra), and 
to decrease L/h (Nakagawa & Frenzen 1955), and because of the presence of 
wind shear, water vapour, and vertical decrease of density in the atmosphere. 
Also, the atmospheric Rayleigh numbers, though possibly very large, can hardly 
be estimated because of uncertainty of surface and inversion temperatures. 

The longitudinal aspect ratio (chamber length divided by h) limits the number 
of cells present for any given W / h  and Ra. Table 1 gives values of longitudinal 
aspect ratio for the three Rayleigh numbers employed, as well as other pertinent 
information. Reference to table 1 and figure 5 indicates there were 6 cells, or 
12 vortices, present in the longitudinal direction for Ra = 1.6 x 106 and W/h  > 9. 
An increase of Ba, with h held constant, leads to an increase of L/h; but since 
a small integral number of vortices must be present, the predominant cell length 
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changes in discrete steps. It appears likely that in any actual experiment the 
discrete increases of predominant cell length which occur if Ra is increased would 
be associated with small but discrete changes of heat flux and other properties 
of the convection. In  the experimental study of Malkus (19544,  discrete changes 
in the slope of the heat-flux versus AT, or Rayleigh number, curve were observed 
for constant aspect ratio. It seems unlikely, however, that these changes were 
associated with discrete changes in predominant cell diameter; for the ratio of 
chamber diameter to height utilized by Malkus was as small as 2.5 and yet 
discrete slope transitions were observed at Ru = 8-5 x lo5 and 1.6 x lo6. Inspec- 
tion of figure 5 suggests that for this small aspect ratio in both horizontal 
directions, only one dominant cell or half-cell would be present at any large 
Rayleigh number. 

Longi- 
tudinal 

Ra All  h !F V k aspect 
("(2 (em) ("W (cm2/sec) ratio 

1.6 x 105 17.1 6.1 293 0.182 0.255 73.2 
1.6 x 106 22.8 10.2 300 0.187 0.262 36.6 
1.5 x 107 28.7 20.4 304 0.192 0-269 18.3 

- 

TABLE 1 

Normalized power spectra of temperature measured at  a fixed point, and 
also longitudinally within the convection chamber, are shown in figure 6 for 
Ra = 1-6 x 106. The spectral estimates, denoted by S, were obtained by direct 
Fourier analyses of the original records (digitized for equally spaced intervals of 
1 see and 1 em, respectively) and subsequent averaging of one-half the sum of 
the squared Fourier sine and cosine coefficients over neighbouring frequencies or 
wave-numbers. It was evident from the original continuous records that 
negligible intensity resided in periods or wavelengths shorter than the data 
intervals utilized, this minimizing any possible effects of aliasing. The upper 
ordinate nS(n)/T'z is the fraction of the temporal variance per increment of the 
logarithm of the Fourier-component number n, where F2 is the temporal vari- 
ance evaluated for a one-hour period. For convenience the abscissa has been 
converted to non-dimensional frequency fh2/v,  where f, the frequency in cycles 
per second, equals n/3600 sec-l. The lower ordinate KS(K)/(T'2) is the fraction 
of the longitudinal variance per increment of the logarithm of the Fourier wave- 
number K ,  where (T'2) is the longitudinal variance evaluated over 260cm, a 
distance somewhat less than the chamber length. For coiivenience the abscissa 
of the lower spectrum has been converted to Llh, where L = 26O/K em. Tempera- 
tures for the lower spectrum of the figure were obtained by passage of a platinum 
resistance wire of 1 . 3 , ~  diameter and 1-5mm length along the convection 
chamber at a uniform speed of 26 em see+, and this spectrum is an average from 
four such runs for 0.4 < x < 0.6, and with W/h = 9-4. The strong peak a t  L/h = 6 
agrees with the value which can be obtained from figure 5. The flatness of the 
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upper spectrum, in contrast, indicates that the predominant cells do not shift 
position or phase with any preferred frequency for large aspect ratios. 

Friction and conduction at the lateral barriers is an undesired effect, in 
comparing these experiments with the numerical calculations. However, these 
factors did not appear to influence appreciably values of L/h, which continued to 
increase smoothly upwards from about 2 as W/h increased. 

0.010 

2.3. Temperature variance 
The non-dimensional temperature variance associated with variations along the 
length of the chamber midway between plates and barriers, is given in figure 7 
as a function of W/h  and Ra. The rapid decrease of (TI2) aa W/h first increases 
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FIUTJRE 7. Non-dimensional longitudinal temperature variance ( T ' z )  against 
aspect ratio W / h  for three Rayleigh numbers. 

from zero occurs because of relaxation of the strong effect of lateral friction upon 
the motions. For when speeds are quite small but finite, il, (warm) thermal plume 
does not mushroom far outwards upon reaching the opposite (cool) plate, and 
thus cannot appreciably reduce the intensity of its neighbouring (cool) plumes. 
Then all the plumes are more intense, with respect to AT, than when motions are 
stronger and when plumes may wrap halfway or more around a vortex as in 
figure 1. Since the intensity of the motions increases with Ra, the same reasoning 
can also qualitatively explain the decrease of ( T 2 )  with increasing Ra. 

The increase of (T'2) with aspect ratio, for Wlh > 1, is closely associated with 
the increase of L/h with aspect ratio. As the major thermal plumes become 
spaced farther apart, it appears reasonable that a given plume would find it more 
difficult to maintain its previous intensity upon mushrooming farther hori- 
zontally, and would then interfere less with the development of its neighbouring 
plumes. Thus the increase of (T'2) and L/h together is quite consistent. 
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The value of ( T 2 )  at z = 4, obtained from the two-dimensional calculations 
of Q 1, is 50 yo larger than the minimum for that Rayleigh number which can be 
estimated from figure 7. The discrepancy may be caused by thermal conduction 
at the lateral walls. The thermal conductivity of the Styrofoam barriers is 50 % 
larger than that of still air, so that they are undesirably effective in diffusing 
temperature fluctuations at their inner surfaces both vertically and laterally 
outwards. I n  a much cruder experimental study of two-dimensional convection 
(Deardorff 1964) in which the lateral insulation was poorer than in the present 
study, (TI2) at z = 4 was only 0.0016 for Ra = 5.5 x lo6. It is thus suggested 
here that the effect of lateral friction in increasing (T‘2) predominated over the 
modifying effect of lateral conduction for W/h 5 0.1, and vice versa for 
W/h  2 0-1. Both effects were probably negligible for W/h > 1. 

At this point a qualitative explanation may be offered for the increase of 
predominant wavelength with aspect ratio. The thermal variance equation will 
be utilized, as it contains fewer unknown terms than does the turbulent kinetic- 
energy equation. If the fluctuating part of equation (2) is multiplied by T’ and 
averaged horizontally, the equation 

is obtained for the statistically steady state. Now at z = 4 the source term 
(wT‘) a(T)/az is negligible because of the isothermal lapse rate (Deardorff 1964), 
and the term a2i(T’2)/&2 is negligible because of the near constancy of (TI2) in the 
central region. Thus at z = 4, 

The right-hand side of (9) may be regarded as a ‘thermal dissipation’, and when 
an increasing aspect ratio allows small-scale turbulence to appear, both sides of 
(9) must increase in magnitude. The left-hand side of (9) could most easily 
increase in magnitude if the intensity T’2 of the dominant thermal plumes were 
to increase. Since an increase of (T‘2) has already been seen to be associated with 
an increase of wavelength of the large cells, an increase of L/h with increasing 
small-scale turbulence and aspect ratio thus follows from this chain of reasoning. 
The reason for the term a$(wT’2)/az being negative at mid-level and being 
associated with the major plumes was given by Deardorff (1964). 

The measured decrease of (T’2) with increasing Rayleigh number, only 
qualitatively explained earlier, can be compared quantitatively with the theory 
of Malkus (1954b). Malkus’s equation for the non-dimensional temperature 
variance may be written 

( (TI2)) = 2 In Nu/3n2Nu, (10) 

where ((P2)) is the variance averaged over all space. Comparison of (T f2)  
measured at z = 4 with equation (10) was accomplished after obtaining an 
average of ( T 2 )  over z by use of data collected with the platinum resistance wire 
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for Ra = 1.6 x lo6. The Nusselt number Nu was obtainedfrom equation ( 11). It 
was found that 

While equation (10) correctly predicts the decrease of ((TI2)) with Ra, the pre- 
dicted values of ( (Y2)) are about 1-9 times larger than the observed values. The 
results for W / h  > 6 are tabulated in table 2. In  a similar comparison by Thomas 
& Townsend (1957), Malkus’s predicted values were found to be too large by a 
factor of 2.6. The discrepancy between the two experimentalresults is caused by the 
underestimation of the time variance, as was measured by Thomas & Townsend, 
in comparison with the horizontal variance unless an extremely large averaging 
period and aspect ratio is used. In  the experiment of Thomas & Townsend with 
an aspect ratio of about 6 and with Ra = 6.75 x lo5, a quasi-steady cell was 
believed to be present. This belief is supported by our results of quasi-steady 
cells at even larger aspect ratios. The discrepancy between the theoretical and 
observed values in table 2 could be caused by one or more of the several assump- 
tions made in Malkus’s theory. 

((T”)) 1*85(T’2)z=+. 

((W) ((W) 
Ra Malkus’s theory observed 

1.6 x 105 0.0240 0.0137 
1.6 x lo6 0.0178 0.0096 
1.5 x 107 0.0114 0.0055 

TABLE 2 

2.4. Degree of turbulence 

If  the motions were fully turbulent, the temperature variance measured at 
a fixed point, F2, could be assumed identical to the horizontal variance, ( T 2 ) ,  
for a sufficiently long averaging period. Therefore, a ‘degree of turbulence ’, R, as 
evidenced by measurements at z = 3, may be conveniently defined as 

R = T-1(Tf2). 
For steady cellular motion R = 0. For three-dimensional flow this case presum- 
ably occurs for 1708 < Ra < 30,000; for a t  the higher Rayleigh number the 
Nusselt-number against Rayleigh-number curve changes slope from the laminar 
value o f t  to a value of about 4 (Silveston 1958), characteristic of turbulent flow 
for which R = 1, presumably. Of course, this definition of R would treat a simple 
oscillation of the cells as turbulence whereas only the disorganized motions are 
usually regarded as being turbulent. However, periodic fluctuations of tempera- 
ture were only observed at  the smallest Rayleigh number studied and for very 
small aspect ratios. Values of R, measured for an averaging period of 1 h, are 
shown in figure 8. The large amount of scatter was caused mainly by the insuffi- 
ciency of an hour’s averaging period. The temporal variance is crucially depen- 
dent upon the amount of phase shift of the predominant cells; sometimes these 
cells would shift phase during the averaging period, and sometimes not. Values 
of R > 1 were presumably associated with the sampling error of (T‘2). 
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The slow increase of R for 0 < W/h  < 1 is mainly due to an increase in intensity 
of short-period non-cellular motions, while the more rapid increase for 
1 < W / h  < 3 is associated largely with increasing phase shift and distortions of 
the dominant cells. This behaviour is consistent with the dimensional power 
spectra of figure 9 calculated by direct Fourier analyses. For convenience nX(n) 
is here plotted logarithmically although the property of equal variance for equal 
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FIGURE 8. Degree of turbulonce R against aspect ratio W/h for three Rayleigh numbers. 
Note shift of origin of successive curves four units to the right. 

area is not preserved. For W/h = 0.4 there is relatively little intensity at the 
shorter periods, but after W/h  has reached 1.5 most of the variance is caused by 
fluctuations of period less than a minute. For W/h  = 9.4 significant power 
resides in much longer-period fluctuations which must be associated with slow 
shifts in position of the major cells. For the large aspect ratios an appreciable 
fraction of the total temporal variance appears to have been cut off by the finite 
averaging for Ra = 1.6 x 106 and larger. 

The curves of R in figure 8 all presumably approach unity as W/h+cO. 
However, at the larger Rayleigh numbers they approach unity very slowly. This 
result is probably associated with increasing steadiness of the predominant cells 
as the Rayleigh number increases and the cells become longer. A much larger 
averaging period than 1 h may then be necessary before the temporal variance 
attains its full value. The increased steadiness of the predominant cells, as the 
Rayleigh number is increased, may also be aided by the decreasing longitudinal 
aspect ratio of the convection chamber (see table 1). 

For the smallest Rayleigh number studied periodic fluctuations of long period 
were observed for W/h  = 0.4, and vacillating fluctuations for W/h  = 0.8. An 
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interesting example of the vacillation is shown in figure 10. The pattern which 
repeats with a period of about 10min is asymmetrical, and temperatures 
measured simultaneously at a point 1.8 m distant showed an entirely different 
pattern of vacillation to be occurring. The smallest scale features of the vacilla- 
tion do not repeat. For larger values of W/h vacillation did not occur, and the 
fluctuations which did occur were turbulent in the usual sense. 

Since periodic or vacillating fluctuations are too regular to be considered 
turbulent, their influence upon R in figure 8 was eliminated for W/h = 0.4 and 
0.8, and Ra = 1.6 x 105. This could be done approximately, for these two cases, 
upon examination of the time spectra which naturally showed sharp peaks in 
intensity at the periods of the oscillation and vacillation. These peaks were 
simply levelled off before calculation of 27'2 and R. 

2.6. Nusselt number 
The non-dimensional heat flux, or Nusselt number Nu,  was obtained from the 
temperature difference between two nickel resistance wires located 1 and 2 mm, 
respectively, above the bottom plate, and extending the entire length of the 
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FIQURE 11. Nusselt number Nu against aspect ratio for three Rayleigh numbers. 

chamber, It was found that the linear boundary gradient extended at least 
2mm from the plate. The wires, of diameter 0-08mm, were calibrated by pro- 
ducing constant and easily measured stable temperature gradients within the 
chamber. Individual measurements of N u  shown in figure 11 are values averaged 
over 1 min periods. This small averaging period here was sufficient because of the 
large length of the resistance wires. For W/h  > 2 the Nusselt numbers are 
essentially independent of aspect ratio and agree well with the dashed lines on 
the right, which were calculated from the empirical formula of Globe & Dropkin: 

N u  = 0*069(Ra)*(Pr)0074. (11) 
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This lack of dependence of N u  upon W / h  has only cursorily been examined before 
by Malkus (1954a) and Globe & Dropkin (1958). 

At extremely small values of W/h,  figure 11 indicates that N u  is smaller than 
the large-width value, undoubtedly because of the effect of lateral friction. 
However, a t  slightly larger values of W/h  of about 0.4, Nu has a maximum 
followed by a slight secondary minimum. We believe that the maximum reflects 
the efficiency of the steady convective regime in transporting heat, in agreement 
with the larger value of Nu calculated in Q 1 for the two-dimensional case. If the 
earlier arguments concerning the effect of lateral heat transfer upon ( T 2 )  are 
correct, the maxima of these N u  curves would be expected to be even greater if 
the lateral insulation had been better. 

The change of intensity of the heat-flux maximum with Rayleigh number, and 
the occurrence of the secondary minimum at the smaller Rayleigh numbers arc 
unexplained features of figure 11. 

The approximate constancy of Nusselt number with aspect ratio for Wlh > 2 ,  
even though (TI2) increases strongly from 1 < W / h  < 4, is another indication of 
the compensatory nature of the vertical velocity and temperature variances at 
mid-level. That is, if (w2) is caused to decrease for some reason, the plumes then 
become less extended so that (Tt2)  increases; while (wT'), which a t  z = t 
essentially equals Nu, tends to remain constant if the correlation between w and 
T' tends to remain constant. 

2.6. Conclusions 

The most important conclusion of this study is that two-dimensional parallel- 
plate convection in a vertical plane has the form of rolls which are non-turbulent 
in character, at least for air with Rayleigh numbers up to 107. This conclusion 
was obtained both experimentally and theoretically. The numerically derived 
two-dimensional heat flux was found to be 25% greater than the three- 
dimensional experimental value, and values of the two-dimensional heat flux 
obtained in the laboratory also tended to be larger than the three-dimensional 
value. Apparently the presence of aperiodic turbulent motions has a dis- 
organizing effect upon the major thermal plumes, and brings about a somewhat 
smaller heat flux than for the steady (two-dimensional) convection at the same 
Rayleigh number. 

As the experimental two-dimensional constraint is relaxed, short-period 
turbulent motions appear, and the large-scale rolls or cells are able to shift 
somewhat and change shape. At the same time, the wavelength of these rolls 
increases gradually from the critical two-dimensional value, and the horizontal 
temperature variance also increases gradually. Because of complicating effects 
of lateral friction and thermal conduction, no definite two-dimensional value 
could be measured for the horizontal temperature variance. The heat flux, in 
contrast to the predominant cell length and temperature variance, quickly 
approaches a constant three-dimensional value as the aspect ratio becomes 
larger than one. 

The 'degree of turbulence', R, increases most rapidly with aspect ratio for 
aspect ratios between 1 and 3. Thus it may be roughly stated that for aspect 
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ratios less than 2 the convection is mainly non-turbulent, and for aspect ratios 
greater than 2 it  is mainly turbulent with respect to time. Surprisingly large 
horizontal aspect ratios, and averaging period, are required at large Rayleigh 
numbers, however, before the temperature variance in time approaches that in 
the horizontal. For Ra > lo6 our results suggest that for approximate equality 
of the two averages, horizontal aspect ratios should be larger than about 20, and 
averaging periods greater than one hour (non-dimensional period greater than 
200). The severity of these criteria increases with increasing Rayleigh number. 

The dimensions of the convection chamber were not large enough to establish 
beyond doubt whether or not the presence of predominate cells of large wave- 
length, at  large Rayleigh numbers, is characteristic of the horizontally infinite 
case. However the presence of quasi-steady cells with very large aspect ratios 
for Ra = 1.6 x lo5, and the tendency for the cell length to become independent 
of aspect ratio for Ra = 1-6 x 106, suggest that quasi-steady cells of distinct size 
do exist for very large horizontal extent at large Rayleigh numbers. 
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